Q1. What is the sum of the first 10 prime numbers less the sum of the next three primes? ATTEMPTS

Q2. The year 1881 looks exactly the same as itself when rotated 180° about its centre. Name the next year after 1881 which also does this. ATTEMPTS

Q3. A two digit number, when read from right to left, is four and a half times as large as when read from left to right. Find the number. ATTEMPTS

A bag contains 10 marbles, 5 green, 3 blue and 2 red. Given that you have already drawn one blue marble from the bag, what is the probability that if two more marbles are drawn from the bag, one at a time without replacement, that neither marble is blue?
ATTEMPTS

Q5.The sum of x and y is 13 and the product is $\mathbf{3 0}$. What is the value of $\frac{1}{x}+\frac{1}{y}$? ATTEMPTS

Q6. The number seven can be expressed in binary(base $\mathbf{2}$) as $\mathbf{1 1 1}_{2}$

2^{2}	2^{1}	2^{0}
1	1	1

And the number 13 is $\mathbf{1 1 0 1}_{2}$

$\mathbf{2}^{3}$	$\mathbf{2}^{2}$	$\mathbf{2}^{1}$	$\mathbf{2}^{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$

What is $101_{2} \times \mathbf{1 0 1 1}_{2}$? Give your answer in binary form.
ATTEMPTS

Q7. Rusty, from the US, was boasting that his car was really economical. In America it would do 40 mpg (that is 40 miles to a gallon of petrol). Moira, a Kiwi, reckoned that her car was more economical as it used 7 litres per 100 km in New Zealand. If one US gallon is 4 NZ litres, and 1 mile is 1.6 km , whose car is most economical AND by how many mpg? Answer to nearest mpg.

ATTEMPTS

Q8

Q

Saffron lives at point $P, 4$ blocks from work at point Q. She randomly chooses the route to work each time she reaches a junction, though she never goes back over any route she has already travelled. What is the probability she takes the longest route to work? Write your answer as a fraction in its simplest form.
ATTEMPTS

Q9. A high powered rifle fires a bullet at $3600 \mathrm{~km} / \mathrm{hr}$ horizontally towards a target 180 m away. The rifle is aimed directly at the bulls-eye. As the bullet travels to the target it drops (because of gravity) a vertical distance \mathbf{d} in metres given by $d=4.9 t^{2}$, where \boldsymbol{t} is the time in seconds to reach the target.

By the time the bullet reaches the target, how many centimetres (to the nearest cm) has the bullet dropped?
ATTEMPTS

Q10. A string, 210 cm long, is laid out as below:

It is cut through the centre, along the line joining A to B. The top half is folded over and laid directly on top of the bottom half. The string is then cut in half again along the line joining \mathbf{C} to D .
Each piece of string is then joined by a knot to every other piece until there is one piece of string again. If each knot shortens the string by $\mathbf{2 c m}$, what percentage of the old string is the new string? ATTEMPTS

Q 11. A boat, which can travel at $2 \mathrm{~km} / \mathrm{hr}$ in still water, sets off from a wharf on one side of a river bank to a wharf directly opposite on the bank of the river 800 metres away. It aims at 90° to the river bank at all times. Unfortunately, a current travelling at $1.6 \mathrm{~km} / \mathrm{hr}$ at right angles to the boat is dragging it downstream.

If the boat remains pointed directly at the opposite bank, how far downstream from the wharf on the opposite bank will it be when it reaches the opposite bank?
ATTEMPTS

Q12. Conway had a V 8 engine which weighed 310kg. One day, for an experiment, he put the engine in his son's 2 metre diameter circular pool. While the engine was underwater, he weighed the engine and found it to weigh 40 kg . How far had the water risen up the side of the pool once the engine had been lowered in? Answer to the nearest millimetre.
Note: 1 litre of displaced water weighs 1kg.
ATTEMPTS

Q13.

$A B D C$ is a rectangle and QPC is a triangle.

What percentage of rectangle ABCD (to the nearest \%)
is the shaded triangle QPC?
ATTEMPTS

Q14

The ratio of the surface area of the smaller cube to the surface area of the larger cube is 12:27 What is the ratio of the volume of the smaller cube to the volume of the larger cube in its simplest form?
ATTEMPTS

Q15. Resistance to a boat moving through water is a cubic relationship. For example, if a craft doubles its speed, then the water resistance increases by a factor of $2^{3}=8$ hence needing 8 times the power.

If a 15hp outboard motor can push a boat through the water at 24 knots, how much horsepower would be needed to drive the same boat at 40 knots? Round to the nearest ten.
ATTEMPTS

Q16. Three brothers Paddy, Sean and Seamus were given a tree topping job for the day.
Paddy earned 80\% of Sean's wage.
Sean earned 120\% of Seamus's wage.
The three men earned a total of \$474.
How much did Sean earn?
ATTEMPTS

Q17. The average rainfall in Te Puke for the first 30 days of January was measured to be 4 mm per day. How much rain must fall on the $31^{\text {st }}$ of January to increase the monthly average to 6 mm per day?
ATTEMPTS

Q18. In 1969 when Buzz Aldrin was on the moon, he collected three round rocks of diameter $\mathbf{6 c m}$, 4 cm and 2 cm respectively for his family.

The total weight of all three he measured to be 3.6 kg . When he returned to Earth (where everything is six times heavier than on the moon) he kept the 4 cm diameter rock for himself and gave the other two to his family. What did his 4 cm diameter rock now weigh?
ATTEMPTS

Q19. This section of pipe is hollow, with the walls $1 / 2 \mathrm{~cm}$ thick.

What is the total surface area of this section of pipe, both inside and outside?
ATTEMPTS

Q20. Using the numbers 1 to 9 , fill in the 3×3 square so that the sum of any 2×2 square (like the shaded square) is always the same. Three of the nine numbers have been filled in for you.

ATTEMPTS

